
Introduction 

In this note, we shall describe how various quantities of a triangle 

such as the sine or cosine of the three' angles, the lengths of the 

three sides, or the lengths of the three altitudes etc., can be the 

roots of a cubic polynomial equation. By Newton's formulas, any 

symmetric polynomial of the three roots can be expressed in 

terms of the coefficients of the cubic polynomial. From this, one 

can obtain many interesting identities and inequalities relating 

various quantities of a triangle. 

Let ABC be a triangle. Denote the length of BC, the length of CA 
and the length of AB by a, b and c respectively. Let r be the 

inradius, R the circumradius and s the semi-perimeter of ABC 
Then the following results can be proved . 

(1) a, b and c are the roots of the equation 

X3 
- 2sX2 + (s2 + r 2 + 4Rr) X - 4sRr = 0. 

(2) sin A, sin B and sin C are the roots of the equation 

4R 2 X3
- 4RsX2 + (s

2 + r 2 + 4Rr) X - 2sr = 0. 

(3) cos A, cos B and cos C are the roots of the equation 

4R2X3
- 4R(R + r)X2 + (s2 + r2

- 4R2}X + (2R + d- s2 = 0. 

(4) tan A, tan B and tan C are the roots of the equation 

(s2 
- (2R + r) 2)X3

- 2srX2 + (s2
- r 2

- 4Rr)X- 2sr = 0. 

(5) The lengths of the three altitudes are the roots of the equation 

2RX3
- (s

2 + r 2 + 4Rr)X2 + 4s2rX- 4s 2r 2 
= 0. 

Let us prove (1 ). c 

A-=---'---__._ ____ L-J_ ___ __,.B 
s-a s-b 

Using the identities 

a = 2R sin A = 4R sin ~ cos ~ and 

s - a = r cot ~ , we have 
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sin 2 A = sin A cos A tan A = ~ _ r_ = ar , 
2 2 2 2 4R s - a 4R (s - a) 

A . A A A a s - a a(s - a) 
cos2

- = sm- cos- cot- = - -- = 
2 2 2 2 4R r 4Rr 

h
. b . ar a(s - a) 

1 From t ts, we o tam + --- = , 
4R (s - a) 4Rr 

which is equivalent to a3
- 2si + (s 2 + r2 + 4Rr)a - 4sRr = 0. 

Similarly, b and c can be proved to satisfy the same condition. 

Therefore, a, b and c are the roots of the equation in (1 ). 

It follows from (1) that two noncongruent triangles cannot have the 

same inradius, circumradius and semi-perimeter. Therefore, the three 

quantities r, R and s uniquely determine a triangle. 

Using Newton's formulas which give the relations between roots and 

coefficients of polynomial equations, we obtain immediately from the 

equation in (1) that 

(6) a + b + c = 2s, ab + be + ca = s2 + r 2 + 4Rr and abc = 4sRr. 

From these relations, any symmetric polynomial in a, b and c can be 

expressed in terms of r, Rand s. For instance, one can easily derive 

the identities 

Equilateral Triangles 

s2 + r2 + 4Rr 
4sRr 

Consider the expression (a - b)
2 + (b - d + (c - a{ We have 

(a - b) 2 + (b - d + (c - a)
2 

= 2 (i + b2 + c2
- ab- be- ca) 

2(s
2

- 3r
2

- 12Rr). 

Hence for any triangle ABC, s
2 ~ 3r(r+ 4R) and equality holds if and 

only if ABC is an equilateral triangle. Furthermore, by Euler's inequality 

(see [2, p.29]), we have R ~ 2r and equality holds if and only if ABC 
is an equilateral triangle. Therefore, l~ 3r(r+8r) = 27r

2
• Consequently, 

s~ 3{3 rand equality holds if and only. if ABC is an equilateral triangle. 

Since the area A of ABC is given by rs, this also gives an isoperimetric* 

inequality l~ 3i3A. 



IDENTITIES 

*For a simple closed curve C of length L, bounding a region of area 

A in the plane, an inequality of the form e ~ kA, where k is a 

positive constant, is called an isoperimetric inequality. It is well

known that e;:::: 4nA, with equality if and only if C is a circle. 

Right-Angled Triangles 

A characterization of right-angled triangles can be derived from (3). 

By (3), we have the relation cosA cosB cosC = 4~2 [5
2

- (2R + r)2
]. 

Therefore ABC is an acute-angled triangle, a right-angled triangle, or 

an obtuse-angled triangle according to 5 > 2R + r, s = 2R + r or 

s < 2R + r. In particular, ABC is a right-angled triangle if and only 

if s = 2R + r. 

Isosceles Triangles 

Let's consider (1) again. We can obtain a condition for isosceles 

triangles. We have 

[(a - b)(b - e)(e - a)]
2 

2 = 18(a + b + e)(ab + be + ea)(abe) - 27(abe) 

+ (a + b + d(ab + be + ea/- 4(a + b + e)\abe) 

- 4(ab + be + ea)
3 

= 4r2 [-54 + 2(2R2 + 1 ORr - r 2)s 2 
- r (4R + r)\ 

by applying (6). It follows from this that 

5
4

- 2(2tf + 10Rr- r
2
)s

2 + r(4R + d = 0 

if and only if ABC is an isosceles triangle. 

Furthermore, since [(a - b)(b - e)(e - a)] 2 
;:::: 0, we have 

s
4

- 2(2R
2 + 1 ORr - r

2
)s

2 + r(4R + d $ 0, 

which is equivalent to 

(2R 2 + 1 ORr - r 2
)- 2~2(R - 2d $ s2 

$ (2R 2 + 10Rr - r
2
) + 2~R(R- 2rt 

Hence, for any triangle ABC, 5
2 

is always between 2lf + 1 ORr - r2 

± 2~ R(R - 2d. This is called the fundamental inequality of the 

triangle. It can be proved (see [3, Chapter 1]) that for any positive 

numbers 5, R and r, there exists a triangle with semi-perimeter s, 
circumradius Rand inradius r if and only if R ~ 2r and 5

2 
is between 

2R 2 + 10Rr- r 2 ± 2~R(R- 2rt 

Note that for any triangle ABC, 

2R
2 + 10Rr- r2 + 2~R(R- 2r)1

;:::: (2R + r( 

Therefore, when / = (2R
2 + 1 ORr - /) + 2~ R(R - 2r) 3

, ABC is an 

acute-angled isosceles triangle. 

Gerretsen's Inequalities 

The fundamental inequality though important, is not easy to apply 

due to the presence of the square root term 2~ R(R - 2d. However, 

it can be weakened to two useful inequalities. Since 

2R2 + 10Rr- r2 + 2~R(R- 2r)1 

= 4R
2 + 4Rr + 3r

2
- [R- 2r - ~R(R- 2r)] 2 

$ 4R
2 + 4Rr + 3r

2 
and 

2R2 + 10Rr- r2
- 2~R(R- 2r)3 

= 16Rr - s/ + [R- 2r - ~R(R- 2r)f;:::: 16Rr- Sr
2

, 

we have 16Rr - Sr2 
$5

2
$ 4R2 + 4Rr + 3r

2
• These are the famous 

Gerrestsen's inequalities [3]. 

Next, we shall prove the useful inequality ..f3 5 $ r + 4R by means 



of another symmetric polynomial of a, b and c. We have 

(a + b - d(a - b)
2 

+ (b + c - a)
2
(b - d + (c + a - b)

2 
(c - a)

2 

= 2[(a + b + c)
4 

- S(a + b + d(ab + be+ ca) 

+ 6(a + b + c)abc + 4(ab + be + ca)
2
] 

= 8/ [(r + 4R)
2 

- 35
2
]. 

Since 

(a + b- d(a - b)
2 

+ (b + c- a)
2
(b - d + (c + a - b)

2 
(c- a)

2
::: 0, 

we have {35 <;:; r + 4R and equality liolds if and only if ABC is 

an equilateral triangle. 

Using Euler's inequality, we have {35.,; ~ + 4R = 
9
2
R. 

Consequently, 5 ~ 3{3 R and equality holds if and only if ABC 
2 

is an equilateral triangle. 

Napoleon Triangles 

Suppose that on each of the three sides of a triangle ABC, an 

equilateral triangle is erected outside ABC. Then the centroids 

of these equilateral triangles form a triangle, called the outer 

Napoleon triangle. If the equilateral triangles are erected inside 

ABC, then the resulting triangle formed by the three centroids is 

called the inner Napoleon triangle. It is well known (see [2, 

p.63]) that for any triangle ABC, both its outer and inner Napoleon 

triangles are equilateral triangles. In our context, the length of 

a side of the Napoleon triangle can be expressed as a symmetric 

polynomial of a, b and c, giving a simple proof of this result. 

Consider the case of the outer Napoleon triangle. Let A
1

, B
1

, and 

C1 be the centroids of the equilateral triangles erected on the 

side BC, AC and AB of triangle ABC respectively. By cosine rule, 

A 1c: = r~ r + [~ ]
2

- 2 ~ ~ cos(B+ 60°). Hence 

A 1C: =} (a2 + c 2
- ac cos B + .Y3 acsin B) 

= l [a2 + c2 _ l (a2 + c2 _ b2) + ..J3 ac[ __Q_ ]] 
3 2 ~R 

= l [ l (a2 + b2 + c2) + -{3 abc ] 
3 2 2R 
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1 -
=- (52 - r2 - 4Rr + 2-Y35r) 

3 

1 - 2 
= 3 [(5 2 + .Y3 r) - 4r (r + R)], 

which is a constant. Similarly, B
1 
C

1

2 and A
1 
B

1

2 equal to this constant. 

Consequently, AI Bl cl is an equilateral triangle of side 

1 2 1 
ff [(5 + ffr) - 4r(r + R)F. 

For the case of the inner Napoleon triangle, one can similarly 

show that it is an equilateral triangle of side 

1 2 1 
-{3 [(5- ..J3r)- 4r(r+ R)F. 

The Brocard Angle 

The Brocard angle of a triangle (see [1]) is the angle w defined by 

cot w = cot A + cot B + cot C. Since it is a symmetric function 

of the three angles, it can be expressed easily in terms of 5, R and 

r. From (4), 

cot w = _1_ + __ 1 - + _ _ 1 -
~n A ~n B ~n C 

Since 52::: 3r(r + 4R), we have 

52 - r2 - 4R r 
25r 

> 3r(r + 4R) - r2 
- 4Rr _ r + 4R 

cot w _ 
2 

- . 
5r 5 

Using the inequality {35 <;:; r + 4R, we deduce that cotw ::: f3. 
Consequently, the Brocard angle of any triangle is less than or 

equal to 30°· 

Geometric Inequalities 

Any symmetric polynomial expression of the lengths of the three 

sides, sine, cosine or tangent of the three angles etc., can be 

expressed in terms of R, r and 5. Using Gerretsen's inequalities 

and others, many interesting geometric inequalities can be obtained. 

In this section, we give some examples in this respect. 

1 
(a) cos A cos B cos C <;:; 8 . 

To prove this, we first have 

1 _2 2 
cos A cos B cos C = - [s - (2R + r)] by (3). 

4R 2 

Using Gerretsen's inequality, 5
2 

<;:; 4R
2 + 4Rr + 3r2 and then 

Euler's inequality, we have 

cos A cos B cos C 

1 1 
= _ [52 

- (2R + r)'] <;:; - [4R 2 + 4Rr + 3r2
- (2R + r)'] 

4R 2 4R 2 

= l [ ~ ]
2 

< 1 2 R - 8 · 

Moveover, equality holds if and only if ABC is an equilateral 

triangle. 



(b) 
b + c c + a a + b > 

6 a + b + c - · 

This can be proved by using the other Gerretsen's inequality, 

52 ~ 16Rr- Sr2 and also Euler's inequality. 

b+c+c+a+a+b 
a b c 

(a + b + c)(ab + be + ca) - 3abc 
abc 

5
2 + r 2 

- 2Rr > (16Rr - Sr2
) + r 2 

- 2Rr 
2Rr - 2Rr 

7R - 2r 
.:....:..:...---=.:..._ ~ 6. 

R 

(c) __ c __ + a + b ~ _2_13_3 . 
(5 - a)(5 - b) (5 - b)(5 - c) (5 - c)(5 - a) 

This can be proved as follows. By the inequality '>/35 ~ r + 4R, 

we have 

c a b ----- + + -----
(5 - a)(5 - b) (5 - b)(5 - c) (5 - c)(5 - a) 

2(4R + r) ~ 213 . 
5r 

Interested readers can derive their own geometric inequalites based on 

the same principle. M' 
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